The cold hard math of the Democratic primaries — Part 2

Bernie Sanders speaking, January 2016

Bernie Sanders speaking, January 2016

Bernie Sanders is no doubt celebrating his narrow win over Hillary Clinton in the Michigan Democratic Primary last night, and Sanders is getting plenty of media buzz today. Unfortunately, Sanders’ win may be too little, too late, due to the cold hard math of the Democratic primaries.

As we’ve said previously, the Democratic primaries are simply a contest for delegates. But the key thing to remember is that these primaries award delegates proportionally. The Democratic primaries are not, like the general election, winner take all. Thus, it’s not just “winning a state” that matters in the primaries, it’s how many delegates are at stake in that state, and, most importantly, the margin of victory. So, since Sanders won Michigan last night by just a little, he and Clinton split the delegates approximately 65-58 for Sanders. But also last night, Clinton won the Mississippi primary by a blowout, 83% to 17%. Again because of the proportional delegate awarding, Clinton therefore won 29 delegates in Mississippi to just four for Sanders. Therefore, Sanders actually lost ground to Clinton last night in the overall Democratic nomination contest by about 18 delegates.

Before last night, Clinton led Sanders by just under 200 delegates. That’s in part because Clinton had racked up big wins in delegate-rich (or reasonably delegate-rich) states such as Texas, Georgia, Alabama, Arkansas, Tennessee, Virginia and Louisiana. Moreover, all the delegate totals we’ve discussed thus far are traditional “pledged” delegates that accompany state popular vote results, not the “unpledged” or so-called “super” delegates that make up 15 percent of the total Democratic delegates, and among whom Clinton has a whopping lead based on those delegates’ stated endorsements. But let’s just stick with the pledged delegates for now. After last night, Clinton’s lead increased to 214 delegates, 760 to 546 (we consider all delegate totals approximate, since different sources sometimes show slightly different totals).

The magic number of delegates to clinch the Democratic Party nomination is 2383 (some sources indicate 2382), which is a simple majority of all the delegates up for grabs this year. Sanders’ problem is that, with a deficit of over 200 delegates (over 39 percent thus far), he must not only (A) win more states, they must be (B) delegate-rich states, and (C) Sanders must win such states by very substantial margins to overtake Clinton and win the nomination. Even if Sanders can win some of the big states coming up, such as Florida, Illinois, North Carolina, Missouri and Ohio on March 15 (and current polls still indicate that Clinton is ahead in them), that pesky proportional delegate math means that, if Sanders merely pulls out narrow victories like the one in Michigan last night, he would have a very tough time winning the nomination. Obviously, if Sanders doesn’t win these states, he would have an even tougher time.

In 2008, Hillary Clinton lost a close Democratic primary contest to Barack Obama largely because Obama’s team mastered the delegate math. In one stunning example, the Nevada Caucus, Clinton actually “won the state,” i.e., the popular vote, but Obama won more delegates, due to his team’s ability to squeeze every possible delegate from every small precinct. Which was more important, “winning the state” or winning more delegates? Two Obama presidential terms later, we know the answer.

So, Bernie Sanders may not be able to win the Democratic Party nomination for president. But his win in Michigan last night perhaps extends his primary race with Hillary Clinton a bit longer. That may give more Democratic voters in more states a chance to determine the outcome of the nomination contest. It will also result in the ultimate nominee being more battle-tested. Those are likely good results for the Democratic Party.

Photo by Michael Vadon, used under Creative Commons license.

There are no comments yet. Be the first and leave a response!

Leave a Reply

Wanting to leave an <em>phasis on your comment?

Trackback URL